Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.08.04.502609

RESUMO

The recently emerged BA.2.75 Omicron sublineage of SARS-CoV-2 identified in numerous countries is rapidly increasing in prevalence in regions of India. Compared with BA.2, the spike protein of BA.2.75 differs in nine amino acid residues. To determine the impact of the spike mutations on polyclonal and monoclonal antibody activity, we investigated the neutralization sensitivity of BA.2.75 in comparison with B.1, BA.2, BA.2.12.1, and BA.4/5. Analysis of post-boost samples from 30 vaccinated individuals revealed significantly lower serum neutralizing activity against BA.2.75 than against BA.2. However, BA.2.75 was more sensitive to serum neutralization than the widely circulating BA.4/5 sublineages. Moreover, evaluation of 17 clinical-stage monoclonal antibodies demonstrated individual differences in Omicron sublineage activity. Notably, some authorized antibodies with low activity against other Omicron sublineages demonstrated high BA.2.75 neutralizing potency. Our results indicate a less pronounced degree of antibody evasion of BA.2.75 compared with BA.4/5 and suggest that factors beyond immune evasion may be required for an expansion of BA.2.75 over BA.4/5.


Assuntos
Síndrome Respiratória Aguda Grave
2.
Sarah Wulf Hanson; Cristiana Abbafati; Joachim G Aerts; Ziyad Al-Aly; Charlie Ashbaugh; Tala Ballouz; Oleg Blyuss; Polina Bobkova; Gouke Bonsel; Svetlana Borzakova; Danilo Buonsenso; Denis Butnaru; Austin Carter; Helen Chu; Cristina De Rose; Mohamed Mustafa Diab; Emil Ekbom; Maha El Tantawi; Victor Fomin; Robert Frithiof; Aysylu Gamirova; Petr V Glybochko; Juanita A. Haagsma; Shaghayegh Haghjooy Javanmard; Erin B Hamilton; Gabrielle Harris; Majanka H Heijenbrok-Kal; Raimund Helbok; Merel E Hellemons; David Hillus; Susanne M Huijts; Michael Hultstrom; Waasila Jassat; Florian Kurth; Ing-Marie Larsson; Miklos Lipcsey; Chelsea Liu; Callan D Loflin; Andrei Malinovschi; Wenhui Mao; Lyudmila Mazankova; Denise McCulloch; Dominik Menges; Noushin Mohammadifard; Daniel Munblit; Nikita A Nekliudov; Osondu Ogbuoji; Ismail M Osmanov; Jose L. Penalvo; Maria Skaalum Petersen; Milo A Puhan; Mujibur Rahman; Verena Rass; Nickolas Reinig; Gerard M Ribbers; Antonia Ricchiuto; Sten Rubertsson; Elmira Samitova; Nizal Sarrafzadegan; Anastasia Shikhaleva; Kyle E Simpson; Dario Sinatti; Joan B Soriano; Ekaterina Spiridonova; Fridolin Steinbeis; Andrey A Svistunov; Piero Valentini; Brittney J van de Water; Rita van den Berg-Emons; Ewa Wallin; Martin Witzenrath; Yifan Wu; Hanzhang Xu; Thomas Zoller; Christopher Adolph; James Albright; Joanne O Amlag; Aleksandr Y Aravkin; Bree L Bang-Jensen; Catherine Bisignano; Rachel Castellano; Emma Castro; Suman Chakrabarti; James K Collins; Xiaochen Dai; Farah Daoud; Carolyn Dapper; Amanda Deen; Bruce B Duncan; Megan Erickson; Samuel B Ewald; Alize J Ferrari; Abraham D. Flaxman; Nancy Fullman; Amiran Gamkrelidze; John R Giles; Gaorui Guo; Simon I Hay; Jiawei He; Monika Helak; Erin N Hulland; Maia Kereselidze; Kris J Krohn; Alice Lazzar-Atwood; Akiaja Lindstrom; Rafael Lozano; Beatrice Magistro; Deborah Carvalho Malta; Johan Mansson; Ana M Mantilla Herrera; Ali H Mokdad; Lorenzo Monasta; Shuhei Nomura; Maja Pasovic; David M Pigott; Robert C Reiner Jr.; Grace Reinke; Antonio Luiz P Ribeiro; Damian Francesco Santomauro; Aleksei Sholokhov; Emma Elizabeth Spurlock; Rebecca Walcott; Ally Walker; Charles Shey Wiysonge; Peng Zheng; Janet Prvu Bettger; Christopher JL Murray; Theo Vos.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.05.26.22275532

RESUMO

ImportanceWhile much of the attention on the COVID-19 pandemic was directed at the daily counts of cases and those with serious disease overwhelming health services, increasingly, reports have appeared of people who experience debilitating symptoms after the initial infection. This is popularly known as long COVID. ObjectiveTo estimate by country and territory of the number of patients affected by long COVID in 2020 and 2021, the severity of their symptoms and expected pattern of recovery DesignWe jointly analyzed ten ongoing cohort studies in ten countries for the occurrence of three major symptom clusters of long COVID among representative COVID cases. The defining symptoms of the three clusters (fatigue, cognitive problems, and shortness of breath) are explicitly mentioned in the WHO clinical case definition. For incidence of long COVID, we adopted the minimum duration after infection of three months from the WHO case definition. We pooled data from the contributing studies, two large medical record databases in the United States, and findings from 44 published studies using a Bayesian meta-regression tool. We separately estimated occurrence and pattern of recovery in patients with milder acute infections and those hospitalized. We estimated the incidence and prevalence of long COVID globally and by country in 2020 and 2021 as well as the severity-weighted prevalence using disability weights from the Global Burden of Disease study. ResultsAnalyses are based on detailed information for 1906 community infections and 10526 hospitalized patients from the ten collaborating cohorts, three of which included children. We added published data on 37262 community infections and 9540 hospitalized patients as well as ICD-coded medical record data concerning 1.3 million infections. Globally, in 2020 and 2021, 144.7 million (95% uncertainty interval [UI] 54.8-312.9) people suffered from any of the three symptom clusters of long COVID. This corresponds to 3.69% (1.38-7.96) of all infections. The fatigue, respiratory, and cognitive clusters occurred in 51.0% (16.9-92.4), 60.4% (18.9-89.1), and 35.4% (9.4-75.1) of long COVID cases, respectively. Those with milder acute COVID-19 cases had a quicker estimated recovery (median duration 3.99 months [IQR 3.84-4.20]) than those admitted for the acute infection (median duration 8.84 months [IQR 8.10-9.78]). At twelve months, 15.1% (10.3-21.1) continued to experience long COVID symptoms. Conclusions and relevanceThe occurrence of debilitating ongoing symptoms of COVID-19 is common. Knowing how many people are affected, and for how long, is important to plan for rehabilitative services and support to return to social activities, places of learning, and the workplace when symptoms start to wane. Key PointsO_ST_ABSQuestionC_ST_ABSWhat are the extent and nature of the most common long COVID symptoms by country in 2020 and 2021? FindingsGlobally, 144.7 million people experienced one or more of three symptom clusters (fatigue; cognitive problems; and ongoing respiratory problems) of long COVID three months after infection, in 2020 and 2021. Most cases arose from milder infections. At 12 months after infection, 15.1% of these cases had not yet recovered. MeaningThe substantial number of people with long COVID are in need of rehabilitative care and support to transition back into the workplace or education when symptoms start to wane.


Assuntos
Doença Aguda , Dispneia , COVID-19 , Fadiga , Transtornos Cognitivos , Doença
3.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.05.12.22274089

RESUMO

Background The COVID-19 pandemic has spurred large-scale, inter-institutional research efforts. To enable these efforts, the German Corona Consensus (GECCO) dataset has been developed previously as a harmonized, interoperable collection of the most relevant data elements for COVID-19-related patient research. As GECCO has been developed as a compact core dataset across all medical fields, the focused research within particular medical domains demanded the definition of extension modules that include those data elements that are most relevant to the research performed in these individual medical specialties. Main body We created GECCO extension modules for the immunization, pediatrics , and cardiology domains with respect to the pandemic requests. The data elements included in each of these modules were selected in a consensus-based process by working groups of medical experts from the respective specialty to ensure that the contents are aligned with the research needs of the specialty. The selected data elements were mapped to international standardized vocabularies and data exchange specifications were created using HL7 FHIR profiles on the appropriate resources. All steps were performed in close interdisciplinary collaboration between medical domain experts, medical information scientists and FHIR developers. The profiles and vocabulary mappings were syntactically and semantically validated in a two-stage process. In that way, we defined dataset specifications for a total number of 23 ( immunization ), 59 ( pediatrics ), and 50 ( cardiology ) data elements that augment the GECCO core dataset. We created and published implementation guides and example implementations as well as dataset annotations for each extension module. Conclusions We here present extension modules for the GECCO core dataset that contain data elements most relevant to COVID-19-related patient research in immunization, pediatrics and cardiology . These extension modules were defined in an interdisciplinary, iterative, consensus-based approach that may serve as a blueprint for the development of further dataset definitions and GECCO extension modules. The here developed GECCO extension modules provide a standardized and harmonized definition of specialty-related datasets that can help to enable inter-institutional and cross-country COVID-19 research in these specialties.


Assuntos
COVID-19
4.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.05.13.491823

RESUMO

The SARS-CoV-2 pandemic prompted a global vaccination effort and the development of numerous COVID-19 vaccines at an unprecedented scale and pace. As a result, current COVID-19 vaccination regimens comprise diverse vaccine modalities, immunogen combinations and dosing intervals. Here, we compare vaccine-specific antibody and memory B cell responses following two-dose mRNA, single-dose Ad26.COV2.S and two-dose ChAdOx1 or combination ChAdOx1/mRNA vaccination. Plasma neutralizing activity as well as the magnitude, clonal composition and antibody maturation of the RBD-specific memory B cell compartment showed substantial differences between the vaccination regimens. While individual monoclonal antibodies derived from memory B cells exhibited similar binding affinities and neutralizing potency against Wuhan-Hu-1 SARS-CoV-2, there were significant differences in epitope specificity and neutralizing breadth against viral variants of concern. Although the ChAdOx1 vaccine was inferior to mRNA and Ad26.COV2.S in several respects, biochemical and structural analyses revealed enrichment in a subgroup of memory B cell neutralizing antibodies with distinct RBD-binding properties resulting in remarkable potency and breadth.


Assuntos
COVID-19
5.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1168453.v1

RESUMO

The Omicron variant of SARS-CoV-2 is causing a rapid increase in infections across the globe. This new variant of concern carries an unusually high number of mutations in key epitopes of neutralizing antibodies on the viral spike glycoprotein, suggesting potential immune evasion. Here we assessed serum neutralizing capacity in longitudinal cohorts of vaccinated and convalescent individuals, as well as monoclonal antibody activity against Omicron using pseudovirus neutralization assays. We report a near-complete lack of neutralizing activity against Omicron in polyclonal sera from individuals vaccinated with two doses of the BNT162b2 COVID-19 vaccine and from convalescent individuals, as well as resistance to different monoclonal antibodies in clinical use. However, mRNA booster immunizations in vaccinated and convalescent individuals resulted in a significant increase of serum neutralizing activity against Omicron. The presented study demonstrates that booster immunizations may be critical to substantially improve the humoral immune response against the Omicron variant.Authors Henning Gruell, Kanika Vanshylla, Florian Kurth, Leif E. Sander, and Florian Klein contributed equally to this work.


Assuntos
COVID-19
6.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267769

RESUMO

The Omicron variant of SARS-CoV-2 is causing a rapid increase in infections in various countries. This new variant of concern carries an unusually high number of mutations in key epitopes of neutralizing antibodies on the spike glycoprotein, suggesting potential immune evasion. Here we assessed serum neutralizing capacity in longitudinal cohorts of vaccinated and convalescent individuals, as well as monoclonal antibody activity against Omicron using pseudovirus neutralization assays. We report a near-complete lack of neutralizing activity against Omicron in polyclonal sera after two doses of the BNT162b2 vaccine, in convalescent individuals, as well as resistance to different monoclonal antibodies in clinical use. However, mRNA booster immunizations in vaccinated and convalescent individuals resulted in a significant increase of serum neutralizing activity against Omicron. Our study demonstrates that booster immunizations will be critical to substantially improve the humoral immune response against the Omicron variant.

7.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.08.26.21262468

RESUMO

COVID-19 mRNA vaccine BNT162b2 is highly immunogenic and effective, but recent studies have indicated waning anti-SARS-CoV-2 immune responses over time. Increasing infection rates has led authorities in several countries to initiate booster campaigns for vulnerable populations, including the elderly. However, the durability of vaccine-induced immunity in the elderly is currently unknown. Here, we describe interim results of a prospective cohort study comparing immune responses in a cohort of vaccinated elderly persons to those in healthcare workers (HCW), measured six months after first immunisation with BNT162b2. Anti-SARS-CoV-2 S1-, full Spike- and RBD-IgG seropositivity rates and IgG levels at six months were significantly lower in the elderly compared to HCW. Serum neutralization of Delta VOC measured by pseudovirus neutralisation test was detectable in 43/71 (60.6%, 95%CI: 48.9-71.1) in the elderly cohort compared to 79/83 in the HCW cohort (95.2%, 95%CI: 88.3-98.1) at six months post vaccination. Consistent with the overall lower antibody levels, SARS-CoV-2-S1 T cell reactivity was reduced in the elderly compared to HCW (261.6 mIU/ml, IQR:141.5-828.6 vs 1198.0 mIU/ml, IQR: 593.9-2533.6, p<0.0001). Collectively, these findings suggest that the established two-dose vaccination regimen elicits less durable immune responses in the elderly compared to young adults. Given the recent surge in hospitalisations, even in countries with high vaccination rates such as Israel, the current data may support booster vaccinations of the elderly. Further studies to determine long-term effectiveness of COVID-19 vaccines in high-risk populations and the safety and effectiveness of additional boosters are needed.


Assuntos
COVID-19
8.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.05.19.21257334

RESUMO

Heterologous prime-boost vaccination is of increasing interest for COVID-19 vaccines. Evidence of rare thrombotic events associated with ChAdOx1-nCoV19 (Vaxzevria, ChAdOx) has lead several European countries to recommend a heterologous booster with mRNA vaccines for certain age groups (e.g. persons <60years in Germany), who have already received one dose of ChAdOx, although data on reactogenicity and safety of this vaccination regimen are still missing. Here we report reactogenicity data of homologous BNT162b2 (Comirnaty, BNT) or heterologous ChAdOx/BNT prime-boost immunisations in a prospective observational cohort study of 326 healthcare workers. Reactogenicity of heterologous ChAdOx/BNT booster vaccination was largely comparable to homologous BNT/BNT vaccination and overall well-tolerated. No major differences were observed in the frequency or severity of local reactions after either of the vaccinations. In contrast, notable differences between the regimens were observed for systemic reactions, which were most frequent after prime immunisation with ChAdOx (86%, 95CI: 79-91), and less frequent after homologous BNT/BNT (65%, 95CI: 56-72), or heterologous ChAdOx/BNT boosters (48%, 95CI: 36-59). This interim analysis supports the safety of currently recommended heterologous ChAdOx/BNT prime-boost immunisations with 12-week intervals.


Assuntos
COVID-19 , Trombose
9.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.03.31.21254683

RESUMO

ObjectivePatients with kidney failure have notoriously weak responses to common vaccines. Thus, immunogenicity of novel SARS-CoV-2 vaccines might be impaired in this group. To determine immunogenicity of SARS-CoV-2 vaccination in patients with chronic dialysis, we analyzed the humoral and T-cell response after two doses of mRNA vaccine Tozinameran (BNT162b2 BioNTech/Pfizer). Design, Settings, and ParticipantsThis observational study included 43 patients on dialysis before vaccination with two doses of Tozinameran 21 days apart. Overall, 36 patients completed the observation period. Serum samples were analyzed by SARS-CoV-2 specific antibodies [~]1 and [~]3-4 weeks after the second vaccination. In addition, SARS-CoV-2-specific T-cell responses were assessed at the later time point by an interferon-gamma release assay (IGRA). Outcomes at later timepoints were compared to a group of 44 elderly patients with no dialysis after immunization with Tozinameran. ExposuresBlood drawings during regular laboratory routine assessment right before start of dialysis therapy or at the time of vaccination and at follow-up study visits. Main Outcomes and MeasuresAssessment of immunogenicity after vaccination against SARS-CoV-2 in patients on and without dialysis. ResultsMedian age of patients on chronic dialysis was 74.0 years (IQR 66.0, 82.0). The proportion of males was higher (69.4%) than females. Only 20/36 patients (55.6%, 95%CI: 38.29-71.67) developed SARS-CoV-2-IgG antibodies at first sampling, whereas 32/36 patients (88.9%, 95%CI:73.00-96.38) demonstrated seropositivity at the second sampling. Seroconversion rates and antibody titers were significantly lower compared to a cohort of vaccinees with similar age but no chronic dialysis (>90% seropositivity). SARS-CoV-2-specific T-cell responses 3 weeks after second vaccination were detected in 21/31 vaccinated dialysis patients (67.7%, 95%CI: 48.53-82.68) compared to 42/44 (93.3%, 95%CI: 76.49-98.84) in controls of similar age. Conclusion and RelevancePatients on dialysis demonstrate a delayed, but robust immune response three weeks after the second dose, which indicates effective vaccination of this vulnerable group. However, the lower immunogenicity of Tozinameran in these patients needs further attention to develop potential countermeasures such as an additional booster vaccination.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA